Aerodynamic and Aeroacoustic Optimization of Airfoils via a Parallel Genetic Algorithm

نویسندگان

  • Brian R. Jones
  • William A. Crossley
  • Anastasios S. Lyrintzis
چکیده

A parallel genetic algorithm (GA) was used to generate, in a single run, a family of aerodynamically efficient, low-noise rotor blade designs representing the Pareto optimal set. The n-branch tournament, uniform crossover genetic algorithm operates on twenty design variables, which constitute the control points for a spline representing the airfoil surface. The GA takes advantage of available computer resources by operating in either serial mode or “manager/worker” parallel mode. The multiple objectives of this work were to maximize lift-to-drag of a rotor airfoil shape and to minimize an overall noise measure including effects of loading and thickness noise of the airfoil. Constraints are placed on minimum lift coefficient, pitching moment and boundary layer convergence. The program XFOIL provides the aerodynamic analysis, and the code WOPWOP provides the aeroacoustic analysis. The Pareto-optimal airfoil set has been generated and is compared to the performance of a typical rotorcraft airfoil under identical flight conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerodynamic optimal design of wind turbine blades using genetic algorithm

Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an...

متن کامل

Aerodynamic Optimal Design of Wind Turbine Blades using Genetic Algorithm

Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an obj...

متن کامل

Aerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)

An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...

متن کامل

The Effects of Shape Parameterization on the Efficiency of Evolutionary Design Optimization for Viscous Transonic Airfoils

The effect of airfoil shape parameterization on optimum design and its influence on the convergence of the evolutionary optimization process is presented. Three popular airfoil parametric methods including PARSEC, Sobieczky and B-Spline (Bezier curve) are studied and their efficiency and results are compared with those of a new method. The new method takes into consideration the characteristics...

متن کامل

Numerical Optimization of Silent Airfoil Sections

Within the work of the EU-funded SIROCCO project new airfoils for the tip region of two reference wind turbines are being designed with the objective to reduce the trailing-edge noise while maintaining the performance. The present paper focuses on the description of the optimization tools along with the aerodynamic and aeroacoustic prediction methods used. Comparisons with detailed boundary-lay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998